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Networks of inhibitory neurons regulate synchrony during many
physiological and pathological oscillations. To explore how these
effects depend on cellular, network, and synaptic factors, we
developed and validated a semisynthetic inhibitory network that
approximates simultaneous activity in multiple neurons by using
consecutive responses from single cells. We recorded from three
types of neurons, each of which forms interconnected networks
in vivo, but has unique intrinsic properties. In all three cell types,
fast inhibitory coupling generated emergent gamma oscillations.
By contrast, inhibitory coupling desynchronized slower, spindle-
frequency responses specifically in thalamic reticular neurons. The
emergent gamma-frequency synchronization was also specific to
tonic input and did not occur during responses to phasic inputs.
These results illustrate how particular features of inhibitory net-
works (e.g., cell or input type) contribute to their synchronizing or
desynchronizing functions. They also demonstrate phenomena
(emergent gamma oscillations) that occur robustly in multiple cell
types and may thus be a generic feature of inhibitory networks
throughout the brain.
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Oscillatory synchrony is central to many physiological and
pathological neural processes and is typically controlled by

networks of coupled inhibitory neurons. Several studies have
elucidated mechanisms by which connections between fast-
spiking (FS) cells contribute to gamma-frequency oscillations
(30–100 Hz), which have proposed roles in perception and�or
attention (1–3). Isolated networks of FS cells generate emergent
gamma oscillations in response to tonic excitation in hippocam-
pal slices (4). During these oscillations, inhibitory synapses
between FS cells generate rhythmic fluctuations in inhibition,
which both pace oscillations and generate synchrony (5–10). FS
cells also fire phase-locked action potentials during gamma
oscillations in entorhinal cortex slices (11). However, it is not
known whether emergent gamma oscillations are a general
feature of inhibitory networks throughout the brain or are
specific to networks of hippocampal FS cells. In addition,
excitatory neurons fire at particular phases of gamma oscillations
and�or intrinsically oscillate at gamma frequencies and may
contribute to gamma oscillations by rhythmically exciting inter-
neurons (12–14). The role of inhibitory synapses between inter-
neurons in synchronizing or desynchronizing gamma oscillations
involving phasic excitatory feedback is unknown.

Whereas inhibitory synapses between FS cells are thought to
synchronize gamma oscillations, inhibitory connections between
thalamic reticular (RE) neurons suppress synchrony during spindle
(6–14 Hz) oscillations, preventing the emergence of hypersynchro-
nous epileptiform activity (15–18). During spindle oscillations, RE
neurons fire Ca2�-dependent spikes, leading to synaptic inhibition
of thalamic relay neurons, which then rebound burst and re-excite
RE neurons (19). Thus, inhibitory neuron firing during spindles is
driven by phasic excitatory feedback. It is not known whether the
very different effects that intra-FS and intra-RE connections have
on synchrony during emergent gamma oscillations and spindle
oscillations, respectively, arise from differences in intrinsic cellular
properties (e.g., Ca2� currents in RE neurons), synaptic properties

(e.g., the slow kinetics of intra-RE inhibition), or other factors (e.g.,
the different frequencies of spindle and gamma oscillations or
differences between phasic and tonic excitatory drive). Ideally, to
answer these questions, one would induce spindle-frequency oscil-
lations in FS cell networks (which normally generate gamma
oscillations) and gamma-frequency oscillations in RE neuron net-
works (which normally participate in spindles), manipulate synaptic
kinetics, and observe how inhibitory coupling affects synchrony in
each case.

Here, we describe a semisynthetic network (cf. ref. 20) composed
of different classes of inhibitory neurons and use it to address the
questions raised above. First, we validate our semisynthetic ap-
proach. Second, we study whether networks composed of various
cell types generate emergent gamma oscillations in response to
tonic excitation. Third, we show how inhibitory coupling affects
synchrony during oscillations driven by phasic excitation. Finally, we
use simulations to verify that our results do not depend on the
details of our semisynthetic approach.

Methods
Slice Preparation. Experiments were performed in accordance
with procedures established by the Administrative Panel on
Laboratory Animal Care at Stanford University. Briefly, post-
natal day 13 (P13) through P20 Sprague–Dawley rats were
anesthetized with pentobarbital. Using a vibratome, we cut
200-�m horizontal slices (thalamic experiments) or 250-�m
coronal slices (neocortical experiments) in a chilled, oxygenated
slicing solution consisting of 234 mM sucrose, 11 mM glucose, 24
mM NaHCO3, 2.5 mM KCl, 1.25 mM NaH2PO4, 10 mM MgSO4,
and 0.5 mM CaCl. Slices were incubated in 32°C oxygenated
artificial cerebrospinal f luid (ACSF) for at least 1 h before
recording. ACSF consisted of 126 mM NaCl, 26 mM NaHCO3,
2.5 mM KCl, 1.25 mM NaH2PO4, 1 mM MgCl2, 2 mM CaCl, and
10 mM glucose. In the recording chamber, slices were main-
tained at 32–33°C and superfused with ACSF.

Intracellular Recording. Whole-cell patch recordings were made
from visually identified neurons of the thalamic RE nucleus or layer
V neocortical interneurons by using IR video microscopy with
Nomarski optics and a Multiclamp 700A amplifier (Axon Instru-
ments, Union City, CA). Patch electrodes (tip resistance � 3–4
M�) were filled with 131 mM K-gluconate, 8 mM KCl, 2 mM NaCl,
10 mM Hepes, 3 mM EGTA, 4 mM MgATP, and 0.3 mM NaGTP.
pH was adjusted to 7.3 by using KOH. The liquid junction potential
was estimated at 14 mV, and the membrane potential was adjusted
accordingly. During all recordings, ionotropic glutamate and
GABA receptors were blocked by bath-applied 6,7-dinitroquinoxa-
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line-2,3-dione (20 �M), 2-amino-5-phosphopentanoic acid (50
�M), and picrotoxin (50 �M).

Current clamp firing behavior and cell morphology were used to
differentiate neocortical interneurons from pyramidal cells. Cur-
rent clamp firing behavior also classified interneurons as FS (n �
6 cells) or non-FS (n� 6 cells). For FS and non-FS cells, the ratio
between the fourth and last interspike intervals was 1.03 � 0.02 and
0.78 � 0.05, respectively (during 200-ms injection of 360 pA).
Action potential half-widths were 0.23 � 0.02 and 0.33 � 0.04 ms
for FS and non-FS cells, respectively.

Dynamic Clamp. Dynamic clamp was implemented by using custom-
written software running under the Real Time Application Inter-
face for Linux (www.aero.polimi.it��rtai). Synaptic currents were
modeled by Isyn � gsyn(Esyn �Vm), where gsyn (synaptic conductance)
and Vm (membrane potential) were updated at 5–10 kHz. Esyn

represents reversal potential. Whenever a virtual synaptic event
occurred, gsyn was incremented by a fixed amount, representing the
amplitude of an individual synaptic event, and thereafter decayed
exponentially with a time constant, �decay. For excitatory synapses,
Esyn � 0 mV and �decay � 2 ms. Inhibitory synapses had variable
decay kinetics, but Esyn was always �75 mV. Bridge balance was
adjusted throughout experiments, insuring accurate Vm measure-
ments. The series resistance was usually 10–20 M�, and experi-
ments were discontinued if the bridge balance exceeded 30 M�. A
two-electrode dynamic clamp has been used (21), but a recent study
found nearly identical results using two-electrode and one-
electrode approaches (22). Dynamic clamp approximates excitatory
postsynaptic currents (EPSCs) by using somatic current injections.
Although many excitatory inputs are located beyond the soma,
somatic current injection has been used in many studies of syn-
chrony in response to excitatory input (20, 23). During experiments,
each sweep was 1 s long, and there were 2 s between sweeps.

Recursive Inhibitory Network (RIN) Parameters. For a recording from
one neuron, all inhibitory postsynaptic currents (IPSCs) had the
same amplitude. The peak amplitude was either 12 or 16 nS when
�decay was 4 ms and was scaled down by a factor of 8 when �decay was
32 ms. We used inhibitory conductances in the 12- to 16-nS range
because at this level introducing IPSCs reduced the number of
spikes by �50%. Inhibitory connections between FS cells in vitro
have amplitudes �5 nS (8). Our connections are slightly stronger,
because there are only five inhibitory inputs to each virtual neuron
in a RIN, whereas neurons in vitro and in vivo probably receive
larger numbers of inhibitory inputs.

The amount of tonic current and EPSC amplitude was adjusted
on a neuron-by-neuron basis to produce firing rates �50–60 Hz in
response to the input stimuli. While recording from a given neuron,
as we changed the type of input, we fixed the EPSC amplitude. For
RE, FS, and non-FS cells, ranges of EPSC amplitudes were 9–12,
5–6, and 4–15 nS, respectively.

All data in the text and figures are reported as mean � SEM.

Analysis. The peri-stimulus time histogram (PSTH) was computed
for each neuron by using 2-ms-wide bins. To calculate cross-
correlation for an experiment, we first subtracted the mean firing
rate (in spikes per bin) from the PSTH, then used this corrected
PSTH to compute the cross-correlation.

To compute the spectral coherence, we first calculated the
Fourier transform of each virtual neuron’s spike rate as a function
of time, using 2-ms-wide bins and windows that were 200 ms wide
and spaced 50 ms apart. Let Fi(�, t) denote the Fourier transform
of virtual neuron i’s spike train as a function of time and frequency.
Then, we defined Cij(�), the coherence between virtual neurons
i and j as the real part of the zero time lag cross-correlation of
Fi(�, t) and Fj(�, t), i.e.,

Cij��	 � �
t

Fi��, t	�Fj��, t	���
t

Fi��, t	�Fi��, t	�
t

Fj��, t	�Fj��, t	,

[F� (�, t) is the complex conjugate of Fi(�, t)]. Thus, when the
Fourier coefficients are out of phase, their contribution to the
coherence is zero, and when they are in phase, their contribution
is related to the product of their amplitudes.

Computational Modeling. All simulations used NEURON (24) at a
temperature of 32°C and with a time step of 0.1 ms. Data have been
averaged over multiple simulations, each with different values for
random parameters, e.g., EPSC times, the pattern of connectivity,
Vm, etc. Unless otherwise specified, all of our simulations contained
10 FS cells, each of which received GABAA receptor-mediated
connections from five other FS cells. For ‘‘directional coupling,’’ the
FS cells were arranged in a ring and each FS cell received
connections from its five neighbors in one direction along the ring,
whereas for ‘‘random coupling,’’ each FS cell received connections
from five other randomly chosen FS cells (no FS cell made more
than one connection with another FS cell, and there were no
autapses). Detailed parameters are found in Supporting Text, which
is published as supporting information on the PNAS web site.

Results
Constructing RINs. To construct semisynthetic inhibitory net-
works, we blocked endogenous synaptic transmission and used a
dynamic clamp (25) to inject a neuron with realistic trains of
EPSCs. Then we implemented IPSCs by using action potential
times on one sweep to trigger IPSCs on later sweeps. As we will
now show, when this approach is implemented appropriately,
responses of a single neuron on consecutive sweeps closely
approximate activity in a network composed of multiple neurons
with similar intrinsic properties.

A ‘‘stimulus’’ is the train of EPSCs injected on a particular sweep.
During each experiment, 10 prespecified stimuli, S1, S2, . . . S10, were
repeatedly presented in sequence, e.g., stimulus S2 was presented on
sweeps 2, 12, 22, etc. (the way we constructed stimuli is described
in detail below). Whereas excitatory stimuli were prespecified and
repeatedly presented in sequence, the times of IPSCs on each sweep
were determined by the times of spikes from the previous five
sweeps (representing five upstream neurons). The times of IPSCs
on sweep 6 were based on the times of spikes on sweeps 1–5, so that
neuron 6 was postsynaptic to neurons 1–5. Fig. 1A shows this setup.

Suppose that eventually the responses to the stimuli converge to
a fixed set of 10 responses, i.e., the response on sweep 41 is the same
as that on sweeps 51, 61, etc. Then let the response on sweep 41
represent the response of ‘‘virtual neuron 1.’’ Define responses of
virtual neurons 2–10 similarly. This only makes sense if the re-
sponses converge, and we will show that this convergence occurs.
Because spikes during each sweep trigger IPSCs during the next five
sweeps, each virtual neuron is presynaptic to the next five virtual
neurons. In this way, the 10 virtual neurons constitute a RIN, which
corresponds to an interconnected ring of 10 neurons, in which each
neuron inhibits its five neighbors in one direction along the ring, as
shown in Fig. 1B. Note that if the convergence is exact, then the set
of responses to the 10 stimuli exactly replicates activity in an actual
ring of 10 neurons interconnected by this pattern. If the conver-
gence is approximate, then the responses to the 10 stimuli approx-
imate responses in the interconnected ring (later we will show that
this approximation is highly precise).

RINs are similar to iteratively constructed networks (ICNs) (20),
but unlike ICNs, which exactly reproduce activity in feed-forward
networks, RINs approximate activity in networks with feedback
connections. Note that while the connections in our RINs were
‘‘directional’’ in the sense that each neuron inhibited five neighbors
in one direction along the ring, each neuron also received feedback
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inhibition from one of these five neighboring neurons. Later we will
demonstrate that random feedback connections produce the same
results as this semidirectional coupling.

Simulated RINs Accurately Approximate Activity in Simulated Net-
works. We next sought to verify that RINs accurately reproduce
activity in actual networks. As explained above, convergence in-
sures such fidelity. In every RIN we studied, regardless of cell type
or stimulus pattern, repeated presentations of the 10 excitatory
stimuli along with synthetic synaptic inhibition elicited virtual
neuron responses that converged to a stable set of 10 responses. Fig.
2A shows successive responses from one virtual neuron in one RIN,
and Fig. 2B plots the average rate of convergence based on 73
experiments in recordings from 21 neurons. As Fig. 2 shows, the
response to the fifth presentation of a stimulus was very similar to
the response to the fourth presentation, demonstrating that activity
converged after four or five presentations, i.e., the response on
sweep i � 30 was very similar to the responses on sweeps i � 40, i �
50, etc., for i � 1, 2, . . . 10.

For additional confirmation, we used computational modeling.
We simulated activity in a network of 10 neurons (‘‘simulated
network’’) and in the corresponding RIN (‘‘simulated RIN’’). A
simulated RIN was a simulation of a single-model neuron, which we
repeatedly stimulated by using the procedure described above, i.e.,
a simulation of the experiment we did to construct a RIN from an
actual neuron. In a network, activity of all 10 neurons evolved
simultaneously, in parallel, whereas in a RIN experiment or in a
simulated RIN, the activity of each virtual neuron was computed
serially. The simulated network and simulated RIN used the same
excitatory stimuli, pattern of connectivity, synaptic and cellular
parameters, etc. By comparing spike times, we found that the
activity of each virtual neuron in the simulated RIN converged to
that of its counterpart in the simulated network.

We systematically matched spikes from simulated networks with

those from the corresponding simulated RINs (and vice versa) and
computed time differences for pairs of matching spikes. Simulations
used various types of excitatory stimuli, described below in more
detail. During responses to noisy tonic excitation, 87% of spikes
matched with a time difference of 
1 ms, and during responses to
phasic excitation of varying frequencies, �99% of spikes matched
with a time difference of 
0.5 ms (n � 4 simulations for each case).
Thus, simulated RINs accurately reproduce activity in the corre-
sponding simulated networks.

Emergent Gamma Oscillations Are a General Feature of Inhibitory
Networks. Having validated the RIN approach by showing that RIN
activity converges in vitro, and that RINs accurately model simu-
lated inhibitory networks, we constructed RINs by making whole-
cell dynamic clamp recordings from RE neurons (n � 9) and two
major classes of neocortical interneurons (26, 27), FS (n � 6) and
non-FS cells (n � 6). (Note, unless otherwise specified, RIN refers
to an experiment using the RIN approach with biological neurons.
We used the terms simulated RIN or simulations to refer to results
from computational modeling.) In our first set of experiments, we
studied whether these three types of inhibitory neurons, which have
very different intrinsic properties, could generate emergent gamma
oscillations, which have previously only been described for networks
of FS cells. We found that regardless of cell type inhibitory networks
invariably generated synchronized gamma oscillations in response
to tonic excitation. Fig. 3A shows five consecutive responses of an
example RE cell, representing five virtual neurons within a RIN, in
the presence and absence of inhibitory coupling. In this experiment,
each virtual neuron received ‘‘noisy tonic’’ input, i.e., a variable
amount of tonic current, representing heterogeneity, and a different
Poisson train of EPSCs, representing noise (the amplitudes of the
tonic current were chosen from a uniform distribution with a width
of 40 pA, and the center of this distribution was chosen to produce
firing rates �100 Hz in the absence of inhibition). Firing was
uncorrelated in the absence of inhibition, but when inhibitory
coupling was present, firing was rhythmic and synchronized (e.g.,
Fig. 3A).

We quantified the effect of inhibitory coupling on network
activity in two ways. First, we computed the spectral coherence (see
Methods) between spike trains from different virtual neurons in the

Fig. 1. Experimental design. (A) We presented excitatory stimulus i on
sweeps i, i � 10, etc. Responses to repeated presentations of the same stimulus
represent successive approximations for the response of a virtual neuron
within the semisynthetic network. IPSC times on each sweep were determined
by the times of spikes on the preceding five sweeps. (B) Ten consecutive
responses during a RIN experiment should approximate the simultaneous
responses of 10 ‘‘virtual neurons’’ arranged in a ring, in which each virtual
neuron inhibits five neighbors in one direction and receives inhibition from
five neighbors in the opposite direction. Connections to�from one virtual
neuron are shown.

Fig. 2. Activity in RINs converges. To construct a RIN, we repeatedly injected
a neuron with the same sequence of 10 stimuli. (A) Responses to the first,
second, etc. presentations of the same stimulus. (B) The fraction of spikes that
occur within 0.5 ms of a spike during the previous presentation of the same
stimulus, as a function of presentation number. By the fourth or fifth presen-
tation, �80% of the spikes occur at stereotyped times (n � 73 experiments
from 21 cells). (Error bars, �SEM.)

18640 � www.pnas.org�cgi�doi�10.1073�pnas.0509291102 Sohal and Huguenard



RIN. We first calculated the coherence based on responses to
stimuli alone (no IPSCs). Then we introduced IPSCs as described
above, and after network activity had converged (e.g., after 40
sweeps), we again calculated the coherence. Fig. 3B Left shows the
coherence spectrum for the RIN depicted in Fig. 3A, when inhi-
bition is present (red line) or absent (black line). In this case, adding
inhibitory synapses increased coherence in the gamma band (30–

100 Hz), indicating synchronized gamma-frequency activity. Inhib-
itory coupling produced a similar effect in the population average
coherence spectrum (Fig. 3B Right), which was computed from
responses of all three cell types to noisy tonic input (n � 20 cells).
For each experiment, we found that inhibitory coupling signifi-
cantly increased peak gamma band coherence (Fig. 3D Left) in
RINs constructed from either FS, non-FS, or RE cells (each case,
n � 6–8 cells, P 
 0.001). The amount of gamma band coherence
did not differ between cell types (P � 0.29, one-way ANOVA), but
cell type did have a significant effect on the frequency at which peak
gamma band coherence occurred: 89 � 1 Hz in FS cells, 75 � 2 Hz
in non-FS cells, and 81 � 1 Hz in RE cells (P 
 0.05, one-way
ANOVA; Fig. 3D Center). There was no correlation between
frequency and either passive membrane properties or the ampli-
tude of injected current (P � 0.48, multiple linear regression),
suggesting that active, not passive, conductances determine the
oscillation frequency.

We also measured the effect of inhibitory coupling on network
activity by using cross-correlation. We computed cross-correlations
after subtracting the mean firing rate from the peri-stimulus time
histogram, so as to measure only correlations between phasic
changes in the level of activity, not correlations between the mean
firing rates of two virtual neurons. For each experiment, we
averaged cross-correlograms from all pairs of virtual neurons. Fig.
3C Left shows the cross-correlation averaged for the RE cell
depicted in Fig. 3 A and B. As expected, without inhibitory coupling
(Fig. 3C Left, black line), there were no correlations between
different virtual neurons. However, when inhibitory coupling was
present (Fig. 3C Left, red line), the cross-correlation had a central
peak surrounded by deep troughs, indicating emergent synchrony,
and secondary peaks at �t � 14 and 26 ms, indicating rhythmicity.
Fig. 3C Right shows a similar effect in the population average
cross-correlation, computed from responses of all three cell types to
noisy tonic input (n � 20 cells). Fig. 3D Right shows that adding
inhibitory coupling significantly increased the peak cross-
correlation, a measure of synchrony, in RINs constructed from FS,
non-FS, or RE cells (each case, n � 6–8 cells, P 
 0.001). The
relatively low amplitude of the cross-correlation function results
from the small bin width (2 ms) used to compute cross-correlations,
and the fact that we subtracted the mean firing rate, eliminating
correlations between mean firing rates. The cross-correlograms
shown here are highly damped, because of cycle-to-cycle variability
in the frequency and phase of oscillations. This damping is similar
to that observed during gamma oscillations in vivo (28, 29). [Note:
covariation in neural excitation, in addition to spike-timing syn-
chrony, can produce peaks in the cross-correlation (30). However,
covariation in excitability would also be expected to produce peaks
in the cross-correlogram in the absence of inhibition, which were
not observed.]

Slow Inhibition Fails to Generate Synchronized Oscillations. Because
fast inhibitory coupling produced emergent gamma oscillations in
RINs constructed from disparate cell types, we studied whether
slower inhibition (�decay � 32 ms), characteristic of inhibitory
synapses between RE cells (16), produced similar effects. During
our experiments, the amplitude of the inhibitory conductance
associated with slow IPSCs was always one-eighth that of fast IPSCs,
so that the time integral of each inhibitory postsynaptic conduc-
tance was constant, regardless of �decay. (This was necessary because
slowing inhibitory events without decreasing their amplitude pro-
foundly suppressed firing rates. We found that after normalizing
inhibitory conductances, fast and slow inhibition yielded similar
firing rates.) We found that slow inhibitory coupling failed to
generate gamma frequency synchrony, as measured by cross-
correlation and peak gamma coherence (cf. ref. 8).

Effects of Inhibition on Responses to Rhythmic Input. Having studied
emergent gamma oscillations, we shifted attention to oscillations

Fig. 3. Fast inhibition generates emergent gamma oscillations in all cell
types. (A) Five consecutive responses of an RE cell to tonic current (plus noise),
representing the responses of five different virtual neurons, when fast inhib-
itory coupling is present (Left) or absent (Right). (B) (Left) Coherence in the
gamma frequency range is higher when inhibitory coupling is present (red
line) than when it is absent (black line). The coherence function was calculated
from responses to tonic input of the 10 virtual neurons represented by the RE
cell depicted in A. (Right) Coherence function averaged over responses from
all neurons to tonic input (n � 20 cells). (C) (Left) The cross-correlation is flat
in the absence of inhibition (black line), but after adding inhibitory coupling
(red line), a prominent central peak, side peaks and troughs appear. The
cross-correlogram was calculated by using the responses to tonic input of the
10 virtual neurons represented by the RE cell depicted in A. (Right) Cross-
correlogram averaged over responses of all neurons to tonic input (n � 20
cells). (D) (Left) Average increase in peak gamma coherence (PGC) induced by
fast inhibitory coupling during responses to tonic input, as a function of cell
type. (Center) Average frequency at which PGC occurred as a function of cell
type. (Right) Average increase in the peak cross-correlation induced by fast
inhibitory coupling during responses to tonic input, as a function of cell type.
(Error bars, �SEM.)
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driven by rhythmic excitation. To model these oscillations, we used
stimuli consisting of rhythmically occurring EPSCs, generated with
Poisson statistics, where the EPSC rate was the sum of a sinusoidal,
time-varying component (representing rhythmic excitation) and a
constant component (representing noise). For different virtual
neurons within each RIN, rate functions had identical amplitude
and phase, but the times of individual EPSCs were different. To
study oscillations of different frequencies, we simply changed the
frequency of the sinusoidal component of the EPSC rate function.
As described above, IPSCs decayed with either fast or slow kinetics,
and the amplitude of individual slow IPSCs was normalized.

Fig. 4 summarizes how inhibition affects synchrony as a function
of input type (e.g., tonic vs. phasic, input frequency), cell type, and
synaptic kinetics. Our major finding was that both fast and slow
inhibitory coupling selectively desynchronized RE cell responses to
spindle-frequency (7.5 Hz) input (fast inhibition: P 
 0.001, n � 8
cells; slow inhibition, P 
 0.05, n � 4 cells). Both fast and slow
inhibition were more desynchronizing in RE cells than in FS (fast
inhibition, P 
 0.05, n � 6 cells; slow inhibition, P 
 0.05, n � 3
cells) or non-FS cells (fast inhibition, P 
 0.001, n � 6 cells; slow
inhibition, P 
 0.01, n � 3 cells).

Inhibitory Coupling Desynchronizes Spindle-Frequency Activity in RE
Cells. The different effects of inhibition on spindle-frequency
activity in RE cells and other cell types can be understood as
follows. During troughs of the oscillation, RE cells responded
weakly, whereas other cell types fired significantly more (e.g.,
trough firing rate � 13 � 1 Hz and 49 � 11 Hz in RE and FS cells,
respectively; P 
 0.05). As a result, in RE cells, inhibition had little
effect on trough firing, which was low even in the absence of
inhibition (e.g., slow inhibition only reduced trough firing from 13 �
1 to 7 � 1 Hz), whereas in other cell types, inhibition markedly
reduced trough firing (e.g., in FS cells, slow inhibition reduced
trough firing from 49 � 11 to 11 � 1 Hz). Thus, the main effect of
inhibitory coupling in RE cells was to suppress peak firing, thereby
suppressing synchrony. By contrast, in other cell types, inhibition
suppressed both peak and trough firing, producing no net change
in synchrony.

Effects of Inhibition on Synchrony and Rhythmicity Are Robust to
Changes in Network Architecture. To complement results obtained
with the RIN approach with actual neurons, we simulated networks
of interconnected inhibitory neurons and varied network architec-
ture, intrinsic cellular properties, synaptic properties, etc. Model
neurons consisted of single compartments with Hodgkin–Huxley-
type Na� and K� currents. In every case described below, we did
four simulations for each condition.

First, we simulated different patterns of connectivity. We simu-
lated networks with directional coupling, corresponding to the
situation in RIN experiments, in which each neuron synapses onto
five neighbors in one direction along the ring. Using fast synapses
(�decay � 4 ms, grel � 1.0), we compared the effect of directional
inhibitory coupling with that of random inhibitory coupling and
found precisely the same effects on synchrony in both cases (Fig.
5A). We also simulated large networks (n � 100 model neurons),
in which each neuron inhibited 10 neighboring neurons in each
direction. During responses to rhythmic input, we again found the
same effects (Fig. 5A), and during responses to noisy tonic excita-
tion we observed emergent local (although not networkwide)
synchronization (Fig. 5B).

Finally, we studied the effects of heterogeneity. The coefficient
of variation (CV, the ratio of the standard deviation to the mean)
is �0.2 for FS-FS IPSC amplitude (8). In our recordings from
neocortical FS cells (n � 6 cells), the resting membrane potential
(Vm) and input conductance (gleak) were �72 � 7 mV and 8.5 � 1.2
nS (mean � SD), respectively. Therefore, we simulated responses
to noisy tonic inputs in RINs and networks for which the CV for
IPSC amplitude, Vm, and gleak were 0.2, 0.1, and 0.14, respec-
tively (the heterogeneity index, x, measures heterogeneity). We
simulated values of x between 0 and 1.33 and found that both
convergence and emergent gamma oscillations were robust to
heterogeneity in this range (see Fig. 6, which is published as
supporting information on the PNAS web site). The results of these
simulations suggest that our findings are not artifacts of (i) the
connectivity scheme we have chosen, (ii) the fact that each RIN is
based on a recording from a single neuron, or (iii) the size of the
RIN used in experiments (10 virtual neurons).

To explore the possibility that the failure of ‘‘slow’’ inhibitory to
generate emergent gamma rhythmicity resulted from the normal-
ized amplitude, rather than the kinetics of slow inhibition, we also
simulated networks with slow, but strong, inhibitory connections. In
such networks, the cross-correlogram lacked many characteristic
features of gamma-frequency synchrony, e.g., there was a central
peak, but it was very wide (�10 ms), there were no troughs abutting
the central peak, and side peaks indicative of rhythmicity were
absent. (see Fig. 7, which is published as supporting information on
the PNAS web site).

Effect of Gap Junctions. Gap junctions are often present between
inhibitory neurons of the same class (31–33) and make important
contributions to rhythmic synchrony (34–38). Because our RINs
did not include gap junctions, we wanted to confirm that adding gap
junctions would not alter our major results. Indeed, in simulations,
we found that adding gap junctions induced synchrony, but that

Fig. 4. Effects of inhibitory coupling on synchrony. (A) Effects of fast
inhibitory coupling on synchrony (measured by the peak cross-correlation) as
a function of input frequency and cell type (n � 6 FS cells, n � 4–6 non-FS cells,
and n � 4–9 RE cells, for each frequency). (B) Effects of slow, weak inhibitory
coupling on synchrony (measured by the peak cross-correlation) as a function
of input frequency and cell type (n � 4–5 FS cells, n � 3 non-FS cells, and n �
4–5 RE cells, for each frequency). (Error bars, �SEM.)

Fig. 5. Simulations show that experimental results obtained with RINs are
valid under more general conditions. (A) Inhibitory coupling produces similar
effects on synchrony (measured by the peak cross-correlation) in simulated
inhibitory networks with directional coupling (black line), random connectiv-
ity (red line), and in a large network of 100 model neurons (green line). (B)
Inhibitory coupling generates emergent distance-dependent synchronization
during responses to tonic input in a large network of 100 neurons, with local
connectivity.
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their effect was similar whether or not inhibition was present, so that
the net effect of inhibitory coupling on network synchrony did not
change (see Fig. 8, which is published as supporting information on
the PNAS web site).

Discussion
In this study, we developed a semisynthetic network, the RIN, in
which successive responses from a single neuron approximate
simultaneous responses from different neurons in an inhibitory
network. Using RIN experiments, we studied how inhibitory cou-
pling affects rhythmic synchrony as a function of cell type, input
type (tonic vs. phasic, and input frequency), and synaptic properties.
Although several previous studies have explored aspects of these
questions (5, 6, 8, 9) a comprehensive set of conclusions has not
been possible in the past because of the limited scope of these
studies that used (i) modeling, (ii) oscillations generated by isolated
inhibitory networks driven by noisy tonic excitation, and�or (iii) FS
neurons. We have avoided some of these limitations by studying (i)
real neurons connected by virtual synapses, (ii) oscillations gener-
ated in response to both tonic excitation and rhythmic excitatory
input, and (iii) three types of inhibitory neurons with very different
intrinsic properties.

In all three of the cell types we studied, fast inhibitory coupling
generates emergent gamma synchronization. We also found a
major effect of cell type: inhibitory coupling (either fast or slow)
selectively desynchronizes responses to spindle-frequency input in
RE cells but not in FS or non-FS cells. These findings answer the
questions laid out in the Introduction. In addition, they demonstrate
how inhibitory coupling can produce very different effects on
oscillations generated by different types of input, even when the
properties of inhibition are the same, and the oscillations occur in
the same cells and have similar frequencies. For example, inhibitory
coupling produces emergent gamma frequency synchronization
during responses to tonic excitation in all cell types, but fails to
significantly increase synchrony during RE cell responses to gam-
ma-frequency phasic input.

Implications for Networks of Coupled Inhibitory Neurons. Our results
may help to explain differences in the architectures of various
inhibitory networks, e.g., FS cells are extensively coupled by fast
inhibitory synapses (31, 32), RE cells are coupled by slow inhibitory
synapses (16), and inhibitory connections are largely absent be-
tween low-threshold spiking (LTS) cells in the neocortex (35). FS
cells are thought to contribute to gamma-frequency synchrony (8),
and in experiments, fast inhibitory coupling was most effective at

generating gamma frequency synchrony. Fast connections were
also necessary to synchronize FS cell responses to fast (e.g., 90 Hz)
input in the gamma range. By contrast, the paucity of inhibitory
coupling between LTS cells may reflect the role of these cells in
generating slower, theta frequency oscillations (35), which were
poorly synchronized by inhibitory coupling. Finally, the slow inhib-
itory connections between RE cells are suitable for what is thought
to be their major purpose, desynchronizing low-frequency thalamic
oscillations so as to avert hypersynchrony underlying absence
seizures (16, 17).

Conclusion. Here, we have described a tool for studying networks of
coupled inhibitory neurons and used it to study how inhibitory
coupling regulates synchrony during network oscillations. This
approach allowed us to overcome some constraints of previously
studied in vivo and in vitro networks and compare the effects of
inhibitory connections between various cell types on various types
of oscillations. For example, RE cells have been studied during
spindle-frequency oscillations, but not during gamma oscillations,
whereas the converse is true for FS cells. Similarly, the effects of fast
inhibitory connections between RE cells remain unknown because
naturally occurring intra-RE synapses have slow kinetics, and the
effects of inhibitory coupling between neocortical non-FS cells have
not been well studied because such connections are relatively weak.
The effects of inhibitory coupling on oscillations generated by
phasic excitation are also unknown, because in vitro, it is difficult to
manipulate inhibitory synapses on interneurons without also af-
fecting inhibition onto excitatory neurons. Using RINs, we have
been able to transcend these limitations, and show, for example,
that inhibitory coupling produces different effects on gamma
oscillations depending on whether they occur in response to tonic
or phasic inputs. RINs have also enabled us to identify cell
type-specific functions of inhibitory coupling, e.g., desynchronizing
spindle-frequency activity in RE cells. Finally, RINs have demon-
strated that emergent gamma-frequency synchronization occurs
robustly in multiple cell types and may thus be a general feature of
inhibitory networks with fast coupling (refs. 4 and 5; cf. refs. 8 and
10). These results illustrate how particular features of inhibitory
networks contribute to their synchronizing or desynchronizing
functions and demonstrate phenomena that may represent generic
features of inhibitory networks throughout the brain.
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