

Supplementary Information for:

Development and validation of a potent and specific inhibitor for the CLC-2 chloride channel

Anna K. Koster^{a,b}, Austin L. Reese^c, Yuri Kuryshev^d, Xianlan Wen^{*b*}, Keri A. McKiernan^a, Erin E. Gray^a, Caiyun Wu*^d* , John R. Huguenard*^c* *, Merritt Maduke*^b* *, J. Du Bois*^a* *

^aDepartment of Chemistry, Stanford University, Stanford, CA 94305, USA ^bDepartment of Molecular & Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA ^cDepartment of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA ^dCharles River Laboratories, Cleveland, OH 44128, USA

***Corresponding Authors:** Justin Du Bois, jdubois@stanford.edu**;** Merritt Maduke, maduke@stanford.edu**;** John R. Huguenard john.huguenard@stanford.edu

This PDF file includes:

Figures S1 to S5 Tables S1 to S4

Other supplementary materials for this manuscript include the following:

Dataset 1: Compound library screening results Dataset 2: PDSP and anion channel screening Dataset 3: Chemical synthesis and characterization

Supplementary Figures

Fig. S1. CLC-2 assay on the IWB and identification of 'hit' compounds. (**A**) Assay development. *Left:* Representative human CLC-2 currents on IWB measured before (left) or after (right) treatment with positive control Cd^{2+} in response to the voltage protocol shown. The current decay at negative voltages, which is not seen in manual patch-clamp recordings (**Figure 4C** and references (1–3)) or in a different automated patch-clamp platform (PatchXpress, unpublished data), is likely due to the differences in the intracellular solution, which in this case includes a mixture of Cl- and F⁻. *Right:* Summary data for inhibition of CLC-2 by Cd²⁺ (± SEM, n = 4–32; IC₅₀ = 3.1 ± 0.3 µM). Inhibition was calculated using the maximum current at -120 mV in the presence or absence of Cd²⁺. Assayvalidation studies showed a Z-factor of 0.83 and 0.73 on separate days. (**B**) Structures of representative compounds. *Top:* Structures of top five 'hit' compounds identified in the IWB screen of 772 FDA-approved compounds (ENZO Life Sciences). *Bottom:* Representative structures of compounds known to inhibit other CLC channels (4–5) but found to be ineffective inhibitors of CLC-2 in our screen. DPC and NFA, like the 'hit' compound MCFA, are NSAIDs.

Fig. S2. Manual patch-clamp recording of rat CLC-2. (**A**) Representative traces showing rat CLC-2 currents in transiently transfected CHO cells in response to the voltage protocol shown: before, after, and following washout of 100 nM AK-42. A saturating concentration of $Cd²⁺$ (the low-potency CLC-2 inhibitor used in assay development, **Figure S1**) was added at the end of each experiment (Step 4) to facilitate subtraction of background currents on a given cell; Cd^{2+} was subsequently washed out (Step 5). Steps 1–5 of a typical experiment are shown. (**B**) Summary inhibition data for AK-42 against rat CLC-2, according to protocol shown in (**A**). Individual data points are shown for inhibition at –100 mV for 0.1 nM $(n = 3)$, 0.5 nM $(n = 3)$, 1 nM $(n = 5)$, 10 nM $(n = 5)$, 30 nM $(n = 6)$, 100 nM $(n = 4)$, 1 µM $(n = 4)$. The fitted IC₅₀ value (14 ± 1 nM) is comparable to that obtained for human CLC-2 in the IWB assay (17 ± 1 nM at –120 mV). (**C**) Representative traces showing rat CLC-2 co-expressed with GlialCAM in transiently transfected CHO cells in response to the voltage protocol shown before, after, and following washout of 30 nM AK-42. A saturating concentration of $Cd²⁺$ was added as in (A) to evaluate background currents. (**D**) Summary of inhibition data for 30 nM AK-42 against CLC-2 expressed alone (n = 6, as in **A**) or with GlialCAM (n = 4, as in **C**). Percent inhibition at –120 mV is shown for individual points. Average inhibition is not statistically different between WT CLC-2 with and without GlialCAM ($P = 0.29$ by unpaired t-test).

Fig. S3. Kinetics of CLC-2 inhibition. (**A**) Representative data showing the time course of CLC-2 inhibition by 10, 30, or 100 nM of AK-42. Currents were measured using the IWB; cells were held at the reversal potential (–30 mV), and currents were measured with 2-s test pulses to –120 mV followed by 0.5-s tail pulses to 0 mV, every 10 s. The peak current amplitudes in both the test and tail pulses were measured and plotted as a function of time. Data were fitted with a single exponential function to obtain values for *kapp* (apparent rate constant). (**B**) Plot of *kapp* values as a function of AK-42 concentration at -120 mV (purple) or 0 mV (black) for n = 3 (10 nM) or n = 4 (30 nM, 100 nM) cells. The linear relationship between *kapp* and AK-42 illustrates that inhibition is a first-order process, involving a 1:1 CLC-2 subunit/AK-42 interaction. Regression analysis (fitting simultaneously to both sets of points) yields estimates for on- and off-rates of 9×10^5 M⁻¹ s⁻¹ (slope) and 8×10^3 s⁻¹ (intercept). While the IWB is not set up to allow measurements of reversal, we confirmed reversibility of inhibition using manual patchclamp recordings (**Fig. S2**), with reversal occurring within ~10 min, consistent with the off-rate estimated using the IWB.

Fig. S4. IWB recordings of the CLC-1 channel for AK-42 selectivity studies. Representative traces of CLC-1 currents in a stably expressing CLC-1 CHO cell line using the IWB platform. *Left:* Currents of individual cells before application of a test article in response to the voltage protocol shown. *Right:* Response of each cell to vehicle control (0.3% DMSO in recording solution, *top*), positive control (1 mM Cd2+ , *middle*), or 10 µM of AK-42 (*bottom*).

Fig. S5. Confirmation of AK-42 efficacy and specificity in brain slice recordings.

(**A–B**): **AK-42 mimics knockout of CLC-2 in CA1 neurons.** Steady-state currents (**A**) and current relaxation measurements (**B**) are indistinguishable between CLC-2 wild-type cells treated with 2.5 µM AK-42 and untreated *Clcn2^{-/-}* (P = 0.53 and 0.63 for **A** and **B**, respectively via two-way RM ANOVA.).

(**C**): **Time course of CLC-2 inhibition by AK-42 at 100 nM.** Time course (bottom) and representative whole-cell current traces (top) show reversible inhibition of CLC-2 by 100 nM AK-42. Note that AK-42 visibly decreases current at hyperpolarized (–80 mV) but not depolarized (–20 mV) potentials. CLC-2 is not activated to a great extent at –20 mV; thus, this a measure of compound specificity. Capacitive transients are clipped for display purposes.

(**D–E**) **AK-42 effectively blocks CLC-2 currents at 100 nM in wild-type CA1 neurons.** Summary data showing I-V relationship of wild-type whole-cell steady-state currents (**D**) and current relaxation (**E**) before and after 10 minutes of AK-42 treatment at 100 nM ($n = 6$ cells, 6 slices and 6 animals. P < 0.0001 via two-way RM ANOVA). These results recapitulate those seen with higher (2.5 µM) concentrations of AK-42 (**Figure 5**).

(**F–I**): **Specificity of AK-42 as evidenced by lack of effects on firing frequency and membrane parameters.** (**F**) Firing frequency of CA1 pyramidal cells in response to a 500-ms current injection is not changed after the application of 100 nM AK-42 for 10 minutes. Error bars represent ± SEM throughout. (P = 0.66 via two-way RM ANOVA. n = 10 cells, 10 slices from 6 animals). (**G–I**) Membrane parameters remain unchanged after 10 minutes of AK-42 application (100 nM), calculated from current-clamp recordings in panel F. (P = 0.73, 0.61, and 0.71, respectively, via Student's unpaired *t*-test.)

Table S1. Selected initial 'hit' compounds from ENZO library screen. Summary inhibition data for initial 'hit' compounds (>20% inhibition of CLC-2 at –120 mV) and for selected NSAIDs and AT¹ antagonists sampled from the ENZO library. Percent inhibition of CLC-2 current by 30 µM compound at –120 mV is shown for each of two cells. Results from the complete screen (including those shown here) are available in **Dataset 1**. Approximate IC₅₀ values of the most potent hit compounds and other selected compounds are shown in the lower right portion of the table. Values were estimated from inhibition measured at 4 concentrations of compound (1, 3, 10, 30 μ M, n = 3–4 per concentration) using the IWB platform. For compounds that exhibit little or no inhibition of CLC-2, the IC_{50} is listed as $>$ the highest concentration of compound tested, and the amount of inhibition observed at this concentration is shown in parentheses.

*While silver sulfadiazine exhibits a low IC_{50} , subsequent screening of the equivalent sodium salt revealed that inhibitory effects on CLC-2 are due to the silver cation and not the organic sulfadiazine scaffold, thus excluding this compound from further SAR studies.

Table S2. CLC-1 vs. CLC-2, IC₅₀ values for MCFA and derivatives. Final IC₅₀ values for selected compounds against human CLC-1 and human CLC-2, using the IWB platform. If the IC₅₀ was greater than the highest concentration tested, this concentration is listed along with the % inhibition at this concentration (in parenthesis). *For MCFA, the maximum inhibition of CLC-1 at 100 µM was 61%; thus, this IC_{50} value is an approximation.

Table S3. Percent inhibition of CLC-1 and CLC-2 currents with AK-42. % inhibition values for human CLC-1 and human CLC-2 with AK-42, as shown in **Figure 3**. Values of over 100% reflect that some current measurements at –120 mV flipped from negative to slightly positive in the presence of inhibitor.

Table S4. Inhibition of CLC-2 point mutants at 30 nM AK-42. % inhibition values for WT CLC-2 and four mutants (K400R, Q399P, K210M, K210R) with 30 nM AK-42 at –100 mV, as shown in **Figure 4D**.

References Cited:

- 1. L. Zúñiga *et al.*, The voltage-dependent CLC-2 chloride channel has a dual gating mechanism. *J. Physiol.* **555**, 671–682 (2004).
- 2. Y. R. Yusef *et al.*, Removal of gating in voltage-dependent CLC-2 chloride channel by point mutations affecting the pore and C-terminus CBS-2 domain. *J. Physiol.* **572**, 173–181 (2006).
- 3. M. Pusch, S. Jordt, V. Stein, T. J. Jentsch, Chloride dependence of hyperpolarization-activated chloride channel gates. *J. Physiol.* **515**, 341–353 (1999).
- 4. A. K. Koster *et al.*, A selective class of inhibitors for the CLC-Ka chloride ion channel. *Proc. Natl. Acad. Sci.* U. S. A. **115**, E4900–E4909 (2018).
- 5. A. S. Verkman, L. J. Galietta, Chloride channels as drug targets. *Nat. Rev. Drug Discov.* **8**, 153–171 (2009).